fireball/amber: An Efficient Local-Orbital DFT QM/MM Method for Biomolecular Systems.
نویسندگان
چکیده
In recent years, quantum mechanics/molecular mechanics (QM/MM) methods have become an important computational tool for the study of chemical reactions and other processes in biomolecular systems. In the QM/MM technique, the active region is described by means of QM calculations, while the remainder of the system is described using a MM approach. Because of the complexity of biomolecules and the desire to achieve converged sampling, it is important that the QM method presents a good balance between accuracy and computational efficiency. Here, we report on the implementation of a QM/MM technique that combines a DFT approach specially designed for the study of complex systems using first-principles molecular dynamics simulations (fireball) with the amber force fields and simulation programs. We also present examples of the application of this QM/MM approach to three representative biomolecular systems: the analysis of the effect of electrostatic embedding in the behavior of a salt bridge between an aspartic acid and a lysine residue, a study of the intermediate states for the triosephosphate isomerase catalyzed conversion of dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, and the detailed description, using DFT QM/MM molecular dynamics, of the cleavage of a phosphodiester bond in RNA catalyzed by the enzyme RNase A.
منابع مشابه
An efficient implementation of a QM-MM method in SIESTA
We present the major features of a new implementation of a QM-MM method that uses the DFT code Siesta to treat the quantum mechanical subsystem and the AMBER force field to deal with the classical part. The computation of the electrostatic interaction has been completely revamped to treat periodic boundary conditions exactly, using a real-space grid that encompasses the whole system. Additional...
متن کاملLennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential
A combined DFT quantum mechanical and AMBER molecular mechanical potential (QM/MM) is presented for use in molecular modeling and molecular simulations of large biological systems. In our approach we evaluate Lennard-Jones parameters describing the interaction between the quantum mechanical (QM) part of a system, which is described at the B3LYP/6-31+G* level of theory, and the molecular mechani...
متن کاملRetinyl Chromophore in Visual Rhodopsin
The H and C Nuclear Magnetic Resonance (NMR) spectra of the retinyl chromophore in rhodopsin are investigated by using Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid methods at the Density Functional Theory (DFT) B3LYP/631G*:Amber level, in conjunction with the Gauge Independent Atomic Orbital (GIAO) method for the ab initio Self-Consistent-Field (SCF) calculation of NMR chemical shifts. ...
متن کاملQM/MM methods for biomolecular systems.
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the ...
متن کاملComparative studies for evaluation of CO₂ fixation in the cavity of the Rubisco enzyme using QM, QM/MM and linear-scaling DFT methods.
We evaluate the minimum energy configuration (MM) and binding free energy (QM/MM and QM) of CO2 to Rubisco, of fundamental importance to the carboxylation step of the reaction. Two structural motifs have been used to achieve this goal, one of which starts from the initial X-ray Protein Data Bank structure of Rubisco's active centre (671 atoms), and the other is a simplified, smaller model (77 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2014